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ABSTRACT 
 
 
 

The objective of this thesis is to develop a new calibration system for analog and 

smart digital pressure sensors, operable by only one person, and capable of calibrating lo-

cal and remote sensors connected via RS232 cables, Bluetooth or an 802.11b wireless 

LAN. 

It is proposed that the operator uses a portable calibration standard and a tablet PC 

to conduct the sensor calibration.  In order to handle local sensors directly connected to 

the tablet PC and remote sensors connected to the tablet PC via a network capable appli-

cation processor (NCAP), a dual module application is proposed and developed using 

LabVIEW. The application has a Master Module and a Slave Module.  Both modules are 

able to connect to multiple digital sensors at the same time. The Master Module was de-

signed to run on the operator’s tablet PC offering an easy-to-use graphical user interface 

(GUI) that allows the monitoring or calibration of any connected sensors. The Slave 

Module was designed to run on any networked PC, including the operator’s tablet and an 

NCAP. A dedicated Virtual Instrument (VI) was designed for an iterative calibration 

process based on a least squares fitting method.  This VI automatically computes the 

calibration constants that minimize the measurements errors, and writes the calibration 

constants to the sensor’s RAM or EEPROM.    

A prototype shipboard sensor test bed was constructed in the laboratory, which 

consists of a Honeywell PPT digital pressure sensor, an Omega analog pressure sensor, 

and other 802.11b and Bluetooth wireless LAN components. The newly developed cali-

bration system was successfully demonstrated. 
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EXECUTIVE SUMMARY 
The objective of this thesis is to develop a new calibration system for analog and 

smart digital sensors, which does not requires more than one person to fully operate and 

is capable of calibrating local and remote sensors connected via RS232 cables, Bluetooth 

or 802.11b wireless LAN.  

In order to handle remote sensors connected to shipboard Network Capable Ap-

plication Processors (NCAPs) as well as local sensors directly connected to the operator’s 

computer, a dual module application is proposed and developed using LabVIEW 6.0. The 

application has a Master Module and a Slave Module that can run in the same or different 

machines exchanging information used by the monitoring and calibration processes.  As 

far as communication and interface are concerned, this application equally treats sensors 

permanently installed on ships for measurement purposes and calibration standards used 

to calibrate other sensors.  Calibration standards are usually connected to the application 

as local sensors. 

This dual module application was designed for the typical situation where an op-

erator goes to the calibration site with a laptop or a tablet PC and locates the sensors 

scheduled for calibration already connected to an NCAP. If the NCAP is running the 

Slave Module, the operator can wirelessly control all the sensors already connected and 

additionally connect other sensors to the laptop or tablet PC, e.g., a calibration standard. 

Hence, the shipboard sensors do not need to be disconnected from the NCAP to be cali-

brated.  

Both Master Module and Slave Module are able to connect and handle an unlim-

ited number of digital sensors. The Master Module was designed to run on the operator’s 

laptop or tablet PC offering an easy-to-use GUI that allows the monitoring or calibration 

of any connected sensors. The Slave Module was designed to run on any machine con-

nected to the WLAN, including the operator’s laptop. A dedicated VI was designed for an 

iterative calibration process based on a least squares fitting method and is able to auto-

matically compute the calibration constants that minimize the measurements errors 

through the sensor full scale. The VI is also able to write the calibration constants to the 

sensor’s RAM or EEPROM. 



 xviii

A prototype shipboard sensor test bed was constructed in the laboratory, which 

consists of a Honeywell PPT digital pressure sensor, an Omega analog pressure sensor, 

and other 802.11b and Bluetooth wireless LAN components. The newly developed cali-

bration system was successfully demonstrated to NAVSEA-Corona and NAVSEA-

Philadelphia representatives. A lighter version was developed to streamline the current 

shipboard calibration procedures for analog sensors, reducing the time and personnel re-

quired for periodical calibration tasks. The application is scheduled to be tested and 

evaluated in the Land-Based Testing Facility (LBTF) at NAVSEA-Philadelphia. 
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I. INTRODUCTION 

A. MOTIVATION 
Naval ships deploy many sensors to monitor shipboard system conditions and en-

vironmental conditions. In order to reduce the requirement for shipboard manning, many 

more sensors are required for shipboard monitoring. Current DDG ships have approxi-

mately 3,742 hull, mechanical, and electrical (HM&E) sensors [Ref. 1]. The number of 

sensors required for a next generation destroyer, DD21, is expected to be in the range of 

200,000 [Ref. 2].   

The reliable operation and readiness of ships depend on the accuracy of sensor 

data.  To ensure accurate readings from sensors over long periods of time, most sensors 

need to be calibrated on a regular basis. The current calibration process is mostly manual, 

time consuming, and labor intensive [Ref. 1]. To meet the challenge of reducing crew 

size and significantly deploying more sensors in the future, there is a clear need for de-

veloping new, automated calibration processes and standards. 

While mechanical gages and analog sensors prevail on today’s ships, advanced 

sensors such as IEEE 1451 smart sensors and wireless sensors are expected to be installed 

on future ships. For the most part, calibration processes for smart sensors have not been 

established. Conventional analog sensors simply provide a voltage or current output pro-

portional to pressure, temperature, or other physical parameters to be measured. Calibra-

tion constants are stored elsewhere outside of sensors, e.g., at the Integrated Condition 

Assessment System (ICAS).  In addition to providing measurement readings, smart sen-

sors have other features, including the capability of storing calibration constants within 

sensors themselves.  Honeywell PPT (Precision Pressure Transducer) is an example of 

smart sensors [Ref. 3]. It provides pressure measurements in both analog and digital 

forms and has several programmable features such as selectable pressure units, program-

mable integration time, automatic read rate adjusting, network traffic reduction, address-

able network, adjustable calibration constants, retaining new configurations in RAM or 

EEPROM, and others. 
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B. OBJECTIVE OF THESIS RESEARCH 
The objective of this thesis was to develop a closed-loop calibration system for 

smart digital sensors. The calibration system provides flexibility for calibrating sensors 

with different types of connection configurations, including local sensors, remote sensors, 

sensors connected with RS232 cables, sensors with Bluetooth wireless connections, and 

sensors connected through network ports. The calibration system is backward compatible 

to calibrate analog sensors as well. 

C. DESCRIPTION OF CHAPTERS IN THESIS 
Chapter I defines the objective of this thesis by giving a brief explanation about 

the current use of sensors in shipboard systems and the new tendency regarding the use of 

digital sensors. Chapter II details the hardware used in this thesis. Chapter III describes 

the two module approach proposed to solve the problem and explains the software archi-

tecture. Chapter IV explains the Master Module’s design and its major features. Chapter 

V explains the Slave Module’s design and its major features. Chapter VI presents a sim-

plified calibration system focusing on the monitoring and calibration of shipboard analog 

sensors. Chapter VII presents the conclusions and explains the accomplishments of the 

thesis. 
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II. HARDWARE DESCRIPTION 

This chapter presents hardware components used in this thesis. The equipment 

used includes the WiSER 2400IP adapter, the Honeywell Precision Pressure Transducer 

(PPT), the 3e-550I Industrial Wireless Input/Output Node (W-LION), the 3eTI Industrial 

Gateway, the 3eTI Bluetooth Module, the laptop or tablet PC, the Portable Pressure Cali-

brator (PPC), the digital sensor SiPC6 and the pump. 

A. THE WISER 2400IP ADAPTER [AFTER REF. 4] 
The WiSER 2400IP is an 802.11b compliant, or WiFi, radio with an RS232 serial 

interface. See Figure 1. 

 
Figure 1 WISER 2400IP Adapter [From Ref. 4]. 

 

Figure 2 illustrates the WiSER 2400IP dataflow when transmitting and receiving 

data to and from the wireless network. 

When transmitting to the network, the WiSER 2400IP radio takes serial data from 

the equipment or computing device connected via its RS232 port, converts the serial data 

into TCP/UDP data packets, and transmits these packets with the RF modulation that is 

compliant with the specifications of the 802.11b physical layer.  
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When receiving data from the wireless network, the radio demodulates the RF 

signal, removes the Ethernet headers, unpacks the packet and delivers the data byte-by-

byte to the destination equipment/device through the RS232 serial port.  

 

 
Figure 2 WiSER 2400IP Adapter’s Dataflow. 

 

Each WiSER 2400IP radio acts as a “Station” and operates in either infrastructure 

or ad-hoc mode in accordance with the 802.11 standards. As such, this radio enables 

RS232-interfaced devices to participate in a wireless Ethernet network. In this capacity, 

the radio, in addition to eliminating the RS232 cables, functions as a media converter for 

RS232-interfaced equipment and IP-based computing-devices.  

The radio is fully self-contained in performing the conversion between serial data 

and wireless Ethernet packets. That is, no device driver needs to be installed on the host-

ing equipment or computing device to which the radio is connected. The True Plug and 

Play feature, therefore, is achieved with any equipment or computing devices with a 

RS232 port. This also means the radio can be used on equipment and/or computing-

devices with any operating system. This is particularly useful for instruments/equipment 

where the use of a RS232 interface is utilized.  

1. Main Specifications of the WiSER 2400IP Adapter [Ref. 4] 

• Standard: 802.11b  

• Host Interface: RS232  

• Frequency: 2.4 GHz – 2.495 GHz  

• Link Distance: ~1200 ft in open space  

• Data Encryption: Support the standard 64-bit and 128-bit WEP  
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• Network Security: MAC-address-based access control  

 

2. Use in Thesis 
In this thesis, the WiSER 2400IP will be used to connect smart digital sensors to 

the wireless Ethernet network in accordance with the 802.11b standards. The application 

shall allow the establishment of communication channels using TCP or UDP protocols 

between each WiSER 2400IP and the operator’s laptop/tablet PC. Additionally, when the 

application is running in a dual machine configuration, the WiSER 2400IP can also be 

connected directly to the NCAP (see Chapter III). 

The WiSER 2400IP adapter makes it possible to eliminate the RS232 cables, to 

surpass the limitation of the number of serial ports per machine, and to pass over the 

NCAP itself because the smart sensors’ information can be directly delivered to the client 

application (ICAS). 

B. HONEYWELL PRECISION PRESSURE TRANSDUCER (PPT) 
The Honeywell precision pressure transducer (PPT) is a “smart sensor” that com-

bines silicon sensor technology with microprocessor-based signal conditioning. 

The heart of this digital sensor is a silicon piezoresistive transducer which con-

tains both pressure and temperature-sensitive elements. Digital signals representing tem-

perature and pressure are processed by a microprocessor to produce fully temperature 

compensated and calibrated pressure readings over the entire –40 to 85 °C (–40 to 185 

°F) temperature range.  

The user is not allowed to modify the factory calibration major settings. However, 

small adjustments (±0.6%FS in 0.005% increments) can be made to the pressure transfer 

curve by modifying the PPT’s full scale slope and offset.  

The factory calibration, together with the user’s adjustments allows, in the major-

ity of the cases, the perfect calibration of the sensor. This feature is explored to imple-

ment the closed-loop calibration system as described in Chapter IV. 

To allow the user to retrieve and store the full scale slope and offset values, the 

Honeywell PPT has specific commands. Additionally, it offers many others commands  
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used to select the type of measurement (pressure, temperature in °F, temperature in °C), 

units of pressure, output mode, read out resolution, sample rates, baud rates and other 

choices. 

There are also commands to set the PPT either to a temporary configuration, until 

the PPT is powered down, or to a permanent configuration if stored in the internal 

EEPROM. In this case, the stored settings are automatically loaded each time power is 

applied. 

1. Main Characteristics [After Ref. 3] 

• Digital Accuracy (from –40° to 185° F):   ±0.05 % FS Typical 

• Analog Accuracy (from –40° to 185° F):  ±0.06 % FS Typical 

• Temperature Accuracy (from –40° to 185° F):  ±1°C (at sensing ele-
 ment) 

• Operating Temperature Range:  –40° to 185°F 

• Sample rate:   8.33 ms to 51.2 min 

• Digital Resolution:   Up to 0.0011 % FS 

• Analog Resolution:  1.22 mV Steps (12 bits) 

• Response Delay:  1 ms, maximum 17 ms 

• Long term stability:  0.02 % FS max per yr. 

• Digital Output:  RS-232  

• Analog Output:  0 to 5 V 

• Baud rate:  1200, 2400, 4800, 9600, 
 14400, 19200, 28800. 

2. Use in Thesis 

This thesis uses the Honeywell PPT digital sensor as the main target sensor for the 

closed-loop calibration process. Although other types of sensors can be used in the digital 

calibration process, the concepts presented here can be easily extended to other digital 

sensors.  

The Honeywell PPT is used in all different manners provided by the application, 

connected via an 802.11b wireless LAN attached to a WiSER 2400IP adapter, Bluetooth 

or RS232 cables. 
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Even if the application is in dual or single machine configuration, the sensor can 

be connected to either a Master or Slave Module to be calibrated, monitored or used as a 

calibration standard.  

Hence, the Honeywell PPT is used not only to prove that the application is capa-

ble of performing the calibration of digital sensors, but also to explore the application’s 

flexibility and monitoring capabilities.  

During the calibration process, if it is used as the target sensor, another sensor is 

required as the calibration standard. On the other hand, if it is chosen as the calibration 

standard, the user can benefit from its high accuracy to calibrate any other locally or re-

motely connected sensors. 

 

 
Figure 3 The Honeywell PPT. [From Ref. 3]. 

 

C. OTHER COMPONENTS 
In addition to the WiSER adapter and the Honeywell PPT, this thesis uses a num-

ber of other hardware components. These components were described in detail in another 

thesis [Ref. 5]. A brief description of these components is provided below. 
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1. The 3E-550I Industrial Wireless Input/Output Node (W-LION) 
The (W-LION) is a Network Capable Application Processor (NCAP) with a com-

pacted and ruggedized case, suitable for working in severe environments. Currently, the 

W-LION has been used in shipboard systems to run a data acquisition and managing pro-

gram to acquire data, process the raw data and send the information to a wireless access 

point which transports it to a client application located elsewhere in the system architec-

ture [Ref. 6].  

2. 3ETI Industrial Gateway 
The 3e-521N is a wireless dual mode gateway [Ref. 7]. Similar to the W-LION, it 

also has a rugged water and corrosive proof encasement developed for harsh environ-

ments and meets military standards for installation onboard United States Navy ships. It 

can be configured in either access point mode to bridge wireless users to wired resources 

or as a gateway to provide additional firewall protection along with multiple broadband 

media selections. However, in this thesis, it is used in the access point mode together with 

a 3COM 3CR856-95 router to simulate a ship network. 

3. 3eTI Bluetooth Module 
The 3e-250 Bluetooth to RS-232 cordless adapter is a small portable serial port to 

Bluetooth converter. It converts the data flow from a RS-232 serial port connection to 

Bluetooth protocol and transmits to other Bluetooth adaptors. With this module, the 

RS232 devices (Honeywell PPT or Crystal PPC) can be wirelessly connected to the lap-

top or tablet PC as long as they have the Bluetooth adaptor.  

4. Laptop or Tablet PC 
The laptop/tablet PC provides the user interface to the entire process running the 

application’s Master Module. It also can run the Slave Module when configured in the 

single machine mode. The operator can use the laptop/tablet PC to calibrate any smart 

sensor connected to the application by choosing a calibrator from the sensor set. 

To be able to control the NCAP when using the dual machine configuration, the 

laptop/tablet PC also contains a program called vncviewer.exe. This program enables an 

operator to view and control the desktop of the NCAP from the laptop/tablet PC.  
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5. The Portable Pressure Calibrator (PPC), the Digital Sensor SiPC6 
and the Pump 

The portable pressure calibrator (PPC) [Ref. 8], manufactured by Crystal Engi-

neering Corporation, and the digital sensor SiPC6, made by SI Pressure Instruments Ltd. 

[Ref. 9], are also used in this thesis for monitoring and calibration purposes. As with the 

Honeywell PPT, these sensors can also be either local or remotely connected via Blue-

tooth, WiSER 2400IP or RS232 cable. 

During the calibration process, a lightweight handheld pump is used to provide 

the desired pressure through a pneumatic or hydraulic medium. The maximum pressures 

that the pump can produce are 600 psi for a pneumatic medium or 10,000 psi for a hy-

draulic medium [Ref. 8].  

D. SUMMARY 
In this chapter, all the hardware components used in this thesis were presented.  

The equipment includes the NCAP, Gateway, Bluetooth-to-RS-232 adaptor, laptop/tablet 

PC, digital sensor SiPC6, Honeywell PPT, WiSER 2400IP, Crystal PPC and the pump.  

The next chapter presents the software architecture. 
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III. SOFTWARE ARCHITECTURE  

This chapter discusses the calibration problem and proposes a two modules ap-

proach as a flexible solution for a new calibration system. The LabVIEW software is pre-

sented as the selected language and some of its features are discussed. The DataSocket 

interface is also introduced and an initial depiction of the connection process is offered. 

A. PROBLEM STATEMENT 
Mechanical gauges and analog sensors are widely used in shipboard systems to-

day. In order to preserve reliability, all sensors are required to be periodically calibrated. 

However, the current calibration process for analog remote display sensors is slow, labor 

intensive and requires a team of service members to perform the task.  

The need for new calibration methods is clear. It is more evident from the fact that 

new generation ships are expected to have the number of sensors drastically increased, 

with smart and wireless sensors assuming a major role in the new systems. Furthermore, 

the challenge to reduce the crew size reinforces the necessity of streamlined calibration 

methods. 

The goal of this thesis was to develop a new closed-loop calibration system for 

digital smart sensors. The system should be designed to support digital sensors installed 

in wireless network based shipboard systems which are likely to be used in new genera-

tion ships. Figure 4 shows the basic Wireless Local Area Network (W-LAN) topology al-

ready tested in the U.S. Navy [Ref. 1]. In this topology, the W-LION (Industrial Wireless 

Input/Output Node) is used to connect to the sensors and transmit the data via an 802.11b 

wireless network. 

The system must be able to control and calibrate local and remote digital sensors 

connected via RS232 cables, Bluetooth, or an 802.11b wireless LAN. The sensors are lo-

cally connected when they are connected to the operator’s laptop or tablet PC and are re-

motely connected when they are connected to the W-LION (NCAP).  

In order to reduce the personnel and time required to conduct the sensor calibra-

tion, the system must also allow the operator, without the help of another service mem-

ber, to control and calibrate any connected sensor from the calibration site. 
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Figure 4 Basic Wireless Local Area Network (W-LAN) Topology [From Ref. 6]. 

 

B. PROPOSED APPROACH 
The program developed in this thesis is able to perform the monitoring, control-

ling and calibration tasks of smart sensors connected wirelessly or through a serial port. 

In order to control sensors connected via NCAP or via the operator’s laptop/tablet PC, the 

application was designed to have two main modules, the Master Module and the Slave 

Module. 

The Slave Module (SM) was designed to collect data from sensors connected 

wirelessly or through the serial port (RS232). However, this module does not have a user 

interface and cannot be directly controlled. It relies on the Master Module (MM) to re-

ceive the user commands or to display sensor data. 

The Master Module plays a more perceptible role because it controls the entire 

monitoring and calibration process.  To perform this role, the Master Module is directly 

commanded by the user and has a Graphic User Interface (GUI) specifically designed for 

this purpose. In addition, it also provides a dedicated two-way communication channel to 

the Slave Module. 
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This dual-module design offers flexibility to the application, allowing it to be 

used to control and calibrate shipboard sensors that have their data wirelessly sent to the 

ship’s LAN by a NCAP. With this configuration, each NCAP in the ship can run the 

Slave Module to gather data from a large set of smart sensors while the Master Module 

may be running on other machines from which the sensors can be controlled or cali-

brated. The calibration process, as described in Chapter IV, is faster and more accurate 

than the calibration process currently used in the Navy. 

This dual-module design is suitable for the topology depicted in Figure 4 and the 

design is not restricted to it. Actually, when the smart sensors are wirelessly connected to 

the LAN, the NCAP is not needed anymore. However, the application can still be used to 

control and calibrate the sensors if both modules are executed in the same machine wire-

lessly connected to the sensor’s network. 

Figure 5 shows both the single and dual machine configuration, illustrating how 

several sensors can be wirelessly connected to the Master and Slave modules. It also 

shows that the user can only interact with the Master Module. 

 

 

Figure 5 Master and Slave Modules in (Left) Single or (Right) Dual Machine Con-
figuration. 

 

It is important to notice that each digital sensor connected to either Master or 

Slave Module requires a bi-directional communication channel in order to be able to re-
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ceive commands and send replies. Furthermore, during the connection process, the user is 

required to advise on the type of sensor and connection to be used. Hence, the sensors 

shown in Figure 5 can represent digital sensors connected via RS232 cables, Bluetooth or 

an 802.11b wireless LAN attached to a WiSER 2400IP adapter. 

To illustrate how the dual-module design can be useful, it is helpful to consider a 

shipboard system with several smart sensors measuring pressure at different points of the 

ship and sending the data to a NCAP. If the NCAP is running the SM, the entire calibra-

tion process discussed in Chapter IV can be done by one person with a tablet PC or a lap-

top running the application’s MM. 

C. USE OF LABVIEW 
LabVIEW was selected for the software development in this thesis. It is a multi-

platform and dataflow program language with an intensive use of modularity and intui-

tive diagram representation. The modules are called Virtual Instruments (VIs) and are 

composed of two windows, the Front Panel and the Block Diagram. The Front Panel is 

used as the graphical user interface and contains the controls (inputs) and indicators (out-

puts) used by the user. The Block Diagram window is the place where the code is actu-

ally developed. It has terminals associated with all the controls and indicators placed in 

the Front Panel. During the development of the graphical source code, functions are cre-

ated and wired to these terminals in order to make operations with data obtained from the 

controls and to present the results through the indicators. Both windows are linked to-

gether in the same VI but are assembled independently, allowing the programmer to fo-

cus either on the user interface or on the program functionality. 

D. USE OF DATASOCKET AS THE COMMUNICATION CHANNEL 
BETWEEN MODULES 

National Instruments in its measurement suite provides the DataSocket interface. 

DataSocket is a technology based on the industry standard TCP/IP that pulls together es-

tablished communication technologies for measurement and automation. It avoids low 

level programming details by using a self-describing format to transfer data as strings, 

scalars, booleans or clusters on their original format, eliminating the need for complicated 

parse code. This high level feature is used to simplify data exchange between the Master 

and Slave Modules when they are running on the same or on different computers. 
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To establish the DataSocket communication channel, one application writes the 

desired data to the Datasocket Server through the DataSocket API. The application that 

needs the data uses the same API to retrieve the data from the server. Both applications 

are “clients” from the DataSocket Server point of view. The first one is also called “pub-

lisher” and the second one “subscriber”. 

In this thesis, the Master and Slave modules can act either as publisher or sub-

scriber because two channels were put into effect. The first channel is established just to 

transfer data gathered from the Slave Module’s sensors to the Master Module. The sec-

ond is a two-way command-reply channel established to allow the Master Module to con-

trol the Slave Module’s sensors and receive a reply with the desired information or error 

message. It is important to consider that the Slave Module has only these channels to pass 

information to the user. Hence, it is not allowed to open a dialog box or request any kind 

of action directly from the user.  

For the purpose of this thesis, the DataSocket communication is restricted to a 

Local Area Network (LAN). However, communication could be established over the 

internet by using DataSocket to publish the applications’ data as shown in Figure 6. In 

this case, security becomes an issue and should be treated accordingly by the use of 

DataSocket access restrictions to administer security and permissions.  

 

 
Figure 6 Datasocket Server and the Publisher/Subscriber Relationship. 
 



16 

E. LOCAL SENSORS VS. REMOTE SENSORS 
The application developed in this thesis is able to control and monitor a fair num-

ber of sensors concurrently. The software design does not impose a limit on the number 

of sensors. 

Typically, the person responsible for the calibration goes to the calibration site 

with a laptop or a tablet PC and a calibration standard. The digital sensors scheduled for 

calibration are already remotely connected to the NCAP, and thus are available on the W-

LAN. In this typical situation, the operator needs only to connect the calibration standard 

locally either wired or wirelessly connected to the laptop, after the sensor and calibration 

standard are physically connected. Hence, the data coming from all shipboard sensors 

remotely connected to the NCAP can be seen in the operator’s laptop and compared with 

the data coming from the calibration standard locally connected. 

When the new calibration system is applied to a shipboard system that uses the 

topology depicted in Figure 4, only the calibration standard needs to be locally connected 

to the laptop/tablet PC. However, if the system to be calibrated does not use the NCAP, 

the application should be in the single machine configuration, with both Master and Slave 

Module running on the operators laptop/tablet PC. In this situation, the application must 

be able to connect all the sensors locally via a laptop/tablet PC. 

The use of the WiSER 2400IP adapter is one way to have as many locally con-

nected sensors as required. See Chapter II for hardware specifications. The flexibility 

provided by the dual-module design is further increased by the use of the WiSER 2400IP 

because each device can be connected to either Master or Slave modules using a TCP or 

UDP protocol with the WiSER 2400IP acting as a server and the application as a client. 

F. SUMMARY 
In this chapter the two modules approach is proposed as a flexible solution for a 

new calibration system. The LabVIEW software is presented as the selected language and 

some of its features are discussed. An introduction to the connection process is also pre-

sented. The next chapter explains how the Master Module works and describes its major 

features and the calibration process. 
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IV. THE MASTER MODULE  

This chapter presents the major features of the Master Module with emphasis on 

the multithread characteristics, the sensor connection process, the communication 

mechanism and the calibration process. The computations required by the calibration 

process are provided in three different ways with an example showing the details related 

to each step. 

A. INTRODUCTION 
The Master Module (MM) is the part of the application directly controlled by the 

user and has a Graphical User Interface (GUI) especially designed to obtain the user in-

puts easily and present the results to the user. See Figure 7. Through the MM front panel, 

the user can add a new sensor to the monitored set, view a graphical history of each 

monitored sensor, enable or disable the monitoring status of a particular sensor, execute 

the calibration of a desired sensor against any other sensor chosen as a calibration stan-

dard, remove sensors from the set, view the current value of each sensor numerically and 

graphically, change the type of measurement for the Honeywell PPT, or change the sen-

sor configuration. 

B. MULTI-THREAD FEATURES 
When the Master Module starts, it goes through an initialization stage and then 

starts three concurrent threads that will be kept alive until the application is closed by the 

user. The first thread is responsible for reading and plotting the measurements sent by the 

Slave Module, remotely if in the dual machine configuration, through the DataSocket 

channel. The second thread is in charge of the local measurements and it requests the de-

sired measurements to all locally connected sensors and displays the replies graphically 

and numerically. The third thread implements an event detection mechanism. It is neces-

sary to identify the action requested by the user based on the controls modification. 

Figure 8 shows the two first threads. 
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Figure 7 Application Graphical User Interface (Master Module). 

 

 
Figure 8 Threads to Gather and Display Data from Remote and Local Sensors. 
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The third thread is also in charge of the calibration and removal processes, re-

sponsible for establishing and maintaining connections with all the local sensors (sensors 

connected to the Master Module) and for establishing and maintaining the DataSocket 

connection with the Slave Module which is required to send commands to the remote 

sensors and receive their replies. 

C. THE SENSOR CONNECTION PROCESS 
Both Master and Slave Modules use an array of clusters to keep track of the sen-

sors status. This array of clusters, named “Sensor Set”, represents a table of remotely and 

locally connected sensors. Each cluster comprises 19 fields used to store the sensor status 

as depicted in Figure 9.  

When the user presses the “Add” button to append a new sensor to the set, the 

connection dialog box is displayed, requiring the minimal information for the new sensor. 

To simplify the connection process, most of the fields are filled with the default values 

that can only be modified through the GUI when the sensor is already connected. Actu-

ally, the user does not need to see all the sensor fields. Some fields are hidden and di-

rectly handled by the application. 

Through the connection dialog box the user can define if the sensor should be lo-

cally or remotely connected or if the connection is wired or wireless. In the case of a 

wireless connection, the user can use either the Bluetooth or 802.11b standards. If the 

sensor is attached to a WiSER adapter, the user can choose a TCP or UDP connection. 

Figure 10 shows the appearance of the modal dialog box when the user requests a TCP 

connection.  
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Figure 9 Example of a Sensor Cluster. 

 

 
Figure 10 Modal Dialog to Append a Sensor to Sensor Set. 
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The RequestNewSensorInfo.vi, whose diagram is depicted in Figure 11, is the 

subVI responsible for the connection dialog box. It is a simple subVI which has a subset 

of the sensor cluster (the connection fields), containing only a few fields with the mini-

mal information required to establish a sensor connection. When the user chooses the de-

sired channel, the subVI automatically enables the fields related to that specific channel 

and disables the fields for the information that does not apply to the chosen channel. 

When all the required information is provided, the user can click the OK button to start 

the connection process. 

 

 
Figure 11 Diagram of RequestNewSensorInfo.vi. 

 

When the user confirms the connection request, the Master Module verifies if the 

desired connection is remote or local. If the user requests a local connection, the subVI  
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ConnectSensor.vi, shown in Figure 12, is immediately called. Otherwise, the request is 

sent to the Slave Module through an “addSensor” command, with the cluster supplied by 

the connection dialog box. 

 

 
Figure 12 Diagram of ConnectSensor.vi. 

 

The ConnectSensor.vi subVI has the sensor cluster and a cluster with the connec-

tion fields as inputs. When a TCP or UDP connection is requested, it takes the sensor 

URL and the port numbers provided and tries to establish the desired connection. After 

the connection is established, the reference number generated for the TCP and UDP con-

nection is stored in the sensor cluster which is the main output of the subVI. 

D. THE CALIBRATION PROCESS  

1. Background 
To understand how the smart sensor is calibrated, it is helpful to consider a simple 

scale conversion case. Consider a linear analog transducer (T1) which produces a voltage 

of 1 Volt when the temperature is 32°F and 5 Volts when the temperature is 212°F.  A 

transfer curve (TC1) from the transducer output voltage to a Fahrenheit temperature can 

be found in the following manner: 

 1 5 1
32 212 32

V
F

− −
=

− ° ° − °
 (4.1) 

 



23 

which gives  

 45 13F V= × − ° . (4.2) 

Now consider that a second transducer (T2) gives a voltage of 0.7 Volt when the 

temperature is 32°F and 5.2 Volts when the temperature is 212°F. The transfer curve 

(TC2) for T2 is: 

 
0.7 5.2 0.7
32 212 32

V
F

− −
=

− ° ° − °
  (4.3) 

which gives  

 40 4F V= × + ° . (4.4) 

Although the transducers T1 and T2 have different output values, the temperature 

can be precisely determined if the correct transfer curve is applied. Both transfer curves 

have the form y a x b= ⋅ + , which is a line with slope a and offset b. TC1 has slope 45 and 

offset –13° while TC2 has slope 40 and offset 4°. 

Given a set of N distinct points (xi, yi) related by the expression y ax b= + , the 

slope a and offset b can be determined if N = 2. If N>2, the system is over-determined 

and it may not be possible to find a line which contains all the given points (xi, yi). In this 

case, the line that best fits the points is found. One of the most widely used techniques to 

solve this problem is the Least Squares Fitting (LSF) [Ref. 10].  

The idea behind the Least Squares Fitting is to solve a set of over-determined lin-

ear equations such that the summation of the squared deviation is minimized.  

The deviation ei is the difference between the value computed from the fitting 

curve (i.e., iax b+ ) and the actual value yi. The slope a and offset b that minimize the 

least squares error can be found by differentiating the expression  

 2 2

1 1
( , ) ( )

N N

i i i
i i

D a b e ax b y
= =

= = + −∑ ∑  (4.5) 
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which yields 

 2

1 1 1 1

( , ) 2( ) 2 0
N N N N

i i i i i i i
i i i i

D a b ax b y x a x b x x y
a = = = =

∂  
= + − = + − = ∂  

∑ ∑ ∑ ∑  (4.6) 

 
1 1 1

( , ) 2( ) 2 0
N N N

i i i i
i i i

D a b ax b y a x bN y
b = = =

∂  
= + − = + − = ∂  

∑ ∑ ∑  (4.7) 

or in matrix notation  
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∑ ∑ ∑

∑ ∑
 (4.8) 

which can be solved for a and b as follows  
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. (4.10) 

 

Example 4.1.1: To illustrate how the least squares fitting is used, consider a trans-

ducer T3 with temperature measurements as described in Table 1: 

 

Actual temperature (°F) 30 60 90 120 150 180 

Output voltage (V) 0.90  1.64 2.30 2.90   3.60   4.31 

 
Table 1 Temperature vs. Output Voltage for Transducer T3. 
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To compute the slope and offset that minimize the least squares error, Eq. (4.8) is 

used with the values in Table 2. 

 
i 

ix  iy  2
ix  i ix y  

1 0.90 30.00 0.81 27.00 
2 1.64 60.00 2.69 98.40 
3 2.30 90.00 5.29 207.00 
4 2.90 120.00 8.41 348.00 
5 3.60 150.00 12.96 540.00 
6 4.31 180.00 18.58 775.80 

Total 15.65 630.00 48.74 1996.20 
 

Table 2 Summation Table for Example 4.1.1. 
 

Equation (4.8) becomes 

 
48.74 15.65 1996.2
15.65 6 630

a
b

     
=     

     
  (4.11) 

which gives slope a = 44.59 and offset b = –11.31, and defines the line depicted in Figure 

13. This line maps the transducer output voltage to the measured temperature minimizing 

the error relative to the actual value. 

 

Transfer curve (a=44.59, b=-11.31)
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Figure 13 Transfer Curve After Linear Fitting in Example 4.1.1. 
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2. The Honeywell PPT Calibration Process 

The Honeywell PPT calibration process can be easily understood with the help of 

Figure 14 which shows the calibration standard and a simplified model for the Honeywell 

PPT digital sensor. The figure illustrates the pressure readings from the calibration stan-

dard yc and the readings from the digital sensor ys, when both devices are measuring the 

same physical pressure p*. 

The digital sensor comprises three blocks: 

• Block BT represents the piezoresistive transducer which converts the 
physical pressure p* to an electric signal.  

• Block B0 represents the default factory calibration and temperature com-
pensation. 

• Block B1 represents the compensation block in which constants a1 and b1 
can be adjusted by the user. 

 
Figure 14 Introduction to Digital Sensor Calibration. 

  

Similar to the previous examples, the goal of this calibration problem is to find a 

slope a and an offset b to replace a1 and b1, which minimize the least squares error be-

tween ys and yc. If y0 were known, the values a1 and b1 would be computed by applying 

the Least Squares Fitting (LSF) method to a set of points (y0, yc). However, y0 is not 

available. The sensor only provides the current slope a1 and current offset b1. Hence, the 

slope a and offset b that minimize the least squares error can be found using three differ-

ent approaches described below. 
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a. Canceling the Current Compensation Block Prior to the Applica-
tion of the LSF Method 

Although the uncompensated value y0 is not known, it can be found from 

ys by canceling the compensation applied by block B1. Inverting 1 0 1sy a y b= +  yields 

 1
0

1

sy by
a
−

= . (4.12) 

Hence, the desired slope a and offset b can be found by just applying Eq. (4.8) to a set of 

points (y0, yc). 
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b. Applying the LSF to a Set of Points (yc, ys) to Obtain a2 and b2 

( 2 2s cy a y b= + ) in Order to Compute a and b 

In this approach, the LSF is applied to a set of points (yc, ys) to find a lin-

ear relationship between the readings from the calibration standard and the sensor 

( 2 2s cy a y b= + ). Then, the slope a2 and offset b2, together with the current values of a1 

and b1, are used to calculate the desired slope a and offset b. From Eqs. (4.9) and (4.10), 

a2 and b2 are computed as follows: 

 
( ) ( ) ( ) ( )

( ) ( )

1 1 1
2 2

2

1 1

N N N

c s c si i i i
i i i

N N

c ci i
i i

N y y y y
a

N y y

= = =

= =

−
=

 
−  

 

∑ ∑ ∑

∑ ∑
 (4.15) 

 

 
( ) ( ) ( ) ( ) ( )

( ) ( )

2

1 1 1 1
2 2

2

1 1

N N N N

c s c c si i i i i
i i i i

N N

c ci i
i i

y y y y y
b

N y y

= = = =

= =

−
=

 
−  

 

∑ ∑ ∑ ∑

∑ ∑
. (4.16) 



28 

 

The desired slope a and offset b can be found as follows: 

 1 0 1
1 0 1 2 2

2 2

  s
c

s c

y a y b
a y b a y b

y a y b
= + 

⇒ + = += + 
. (4.17) 

Rearranging the expression to obtain yc as a function of y0 yields 

 1 1 2
0 0

2 2
c

a b by y a y b
a a

−
= + = +  (4.18) 

which gives 

 1

2
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a

=  (4.19) 

 1 2

2

b bb
a
−
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c. Applying the LSF to the Readings (ys,  yc) to Obtain a3 and b3 
( 3 3c sy a y b= + ) in Order to Compute a and b 

This approach is very similar to the previous one, however, the linear rela-

tionship is inverted ( 3 3c sy a y b= + ).  Applying the LSF to a set of points (ys,  yc) yields: 
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The desired slope a and offset b can be found as follows: 
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3 3

  s
c

c s

y a y b
y a a y b b

y a y b
= +  ⇒ = + +

= + 
. (4.23) 

Rearranging the expression to obtain yc as a function of y0 yields 
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 3 1 0 3 1 3 0cy a a y a b b a y b= + + = +  (4.24) 

which gives 

 3 1a a a=  (4.25) 

 3 1 3b a b b= + . (4.26) 

Comparing the equations 2 2s cy a y b= +  and 3 3c sy a y b= + , it is easy to show that 

3 21/a a=  and 3 2 2/b b a= − . 

The desired slope a and offset b can be calculated using one of these three 

approaches just discussed. The calibration VI (Calibration.vi) uses the second approach 

because the application plots the fitting line each time the user acquires a new point dur-

ing the calibration process. The second approach is better for this purpose because the 

plot is done with the readings from the calibration standard over the horizontal axis. 

Having the desired slope a and offset b, more work is not needed if the 

digital sensor allows the replacement of a1 and b1 with the new calibrated values. How-

ever, that is not the case for the Honeywell PPT. 

Block B0 of the Honeywell PPT does the temperature compensation with 

high accuracy. Hence, when the PPT needs to be calibrated, in general, the required ad-

justment on (a1, b1) is very small. For this reason, the PPT allows only small changes in 

these constants.   

The default value for a1 is 1 (one) and it is allowed to have only 0.6% 

variation from 0.994 to 1.006. The default value for b1 is 0 (zero) and it can be adjusted 

only to values in the range from –0.6%FS to +0.6FS where FS is the sensor’s full scale. 

Furthermore, a1 and b1 can only be modified by the addition of a multiple of 0.00005 or 

0.00005*FS respectively: 

 1 1 0.00005a X= + ⋅  (4.27) 

 1 0 0.00005b Z FS= + ⋅ ⋅  (4.28) 
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where X (slope adjustment) and Z (offset adjustment) are integers in the range 

[ 120, 120]− + . Hence, the transfer curve 1 0 1sy a y b= +  for the Honeywell PPT compensa-

tion block (a1, b1) is better written as: 

 0(1 0.00005) 0.00005sy X y Z FS= + ⋅ ⋅ + ⋅ ⋅ . (4.29) 

The Calibration.vi was developed to perform the calibration of the Hon-

eywell PPT by adjusting the slope and offset in Eq. (4.29). This task is accomplished by 

the use of the commands X=, Y=, Z=, and F= described below, available for the Honey-

well PPT.  

• The X= command adjusts the slope of the pressure output curve for posi-
tive pressures. It modifies the positive full scale slope of the PPT.  

• The Y= command adjusts the negative full scale slope of differential 
PPTs.  

• The Z= command adjusts the offset of the pressure output curve.  

• The range of adjustments for X=, Y=, and Z=, commands is ±0.6%FS in 
0.005% increments.  

• The F= command can change the full-scale pressure span to any value be-
tween 50% and 100% of the factory specified range.  

The X= and Y= commands make the slope adjustment, and the Z= com-

mand makes the offset adjustment. The plots on the left and right hand sides of Figure 15 

illustrate the range in which the slope a1 and the offset b1 respectively are allowed to be 

adjusted. 

 

 
Figure 15 Custom Slope and Offset Options [From Ref. 3]. 
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3. A Digital Sensor Calibration Example 

To illustrate how the Calibration.vi works, consider the following example. 

Example 4.3.1: Compute the new slope and offset adjustments to compensate the 

measurements displayed in Table 3 for a Honeywell PPT which has current slope and 

offset adjustments set to Xc = 120 and Zc = –120. Consider a full scale of 300 psi. 

 
Calibrator 7.82 15.95 24.15 32.20 39.87 
Sensor 5.92 14.08 22.36 30.44 38.17 

 
Table 3 Data for the Honeywell PPT Calibration Example 4.3.1. 

 

Figure 16 shows the Front Panel of the Calibration.vi after the acquisition of the 

points listed in Table 3. The results of the calibration computations are displayed in the 

bottom right corner. The white line shows the result of the Least Squares Fitting method 

applied to the measurements. Note that the white line fits the points which represent the 

sensor readings and is below the calibration line. 

 

 
Figure 16 Calibration.vi During Honeywell PPT Calibration Example 4.3.1 
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a. Solution Using the First Approach 

• Find the current compensation slope and offset (a1, b1) with FS = 300psi 

From Eq. (4.27):  1 1 *0.00005 1.006ca X= + =  

From Eq. (4.28):  1 *0.00005* 1.8cb Z FS= = −  

 
• Find the uncompensated values y0 from the sensor readings ys 

Sensor readings  (ys) 5.9200 14.0800 22.3600 30.4400 38.1700
1 1( - )   sy b a  (y0) 7.6740 15.7853 24.0159 32.0477 39.7316

 
Table 4 Conversion Table for Example 4.3.1.a 

 
• Find the desired slope a and offset b by linearly fitting the points (y0, yc) 

The summations required by Eq. (4.8) for the linear fitting are listed in 

Table 5. 

 
0y  cy  2

oy  0 cy y  
i ( ix ) ( iy ) ( 2

ix ) ( i ix y ) 
1 7.67 7.82 58.89 60.01
2 15.79 15.95 249.18 251.78
3 24.02 24.15 576.76 579.98
4 32.05 32.20 1027.06 1031.94
5 39.73 39.87 1578.60 1584.10

Total 119.25 119.99 3490.49 3507.81
 

Table 5 Summation Table for Example 4.3.1.a. 
 

Equation (4.8) becomes 

 
3490.49 119.25 3507.81
119.25 5 119.99

a
b

    
=    

    
 (4.30) 

which yields slope 0.9997a = , and offset 0.1553b = . 

• Computing the new slope and offset adjustments 

(( 1) 0.00005) 6newX round a= − = −  

( (0.00005* )) 10newZ round b FS= =  
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b. Solution Using the Second Approach 

• Find the current compensation slope and offset (a1, b1) with FS = 300psi 

From Eq. (4.27):  1 1 *0.00005 1.006ca X= + =  

From Eq. (4.28):  1 *0.00005* 1.8cb Z FS= = −  

 
• Find a2 and b2 by linearly fitting the measured values ( 2 2s cy a y b= + ) 

The summations required by Eq. (4.8) for the linear fitting are listed in 

Table 6. 

 
cy  sy  2

cy  c sy y  
i ( ix ) ( iy ) ( 2

ix ) ( i ix y ) 
1 7.82 5.92 61.15 46.29 
2 15.95 14.08 254.40 224.58 
3 24.15 22.36 583.22 539.99 
4 32.20 30.44 1036.84 980.17 
5 39.87 38.17 1589.62 1521.84 

Total 119.99 110.97 3525.23 3312.87 
 

Table 6 Summation Table for Example 4.3.1.b. 
 

Equation (4.8) becomes 

 2

2

3525.23 119.99 3312.87
119.99 5 110.97

a
b

    
=    

    
 (4.31) 

which gives slope 2 1.0063a = ,  and offset 2 1.9563b = − . 

• Finding new compensation slope and offset 

From Eq. (4.19):  1 2/ 0.9997a a a= =  

From Eq. (4.20):  1 2 2( ) / 0.15532b b b a= − =  

• Computing the new slope and offset adjustments 

(( 1) 0.00005) 6newX round a= − = −  

( (0.00005* )) 10newZ round b FS= =  
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c. Solution Using the Third Approach 

• Find the current compensation slope and offset (a1, b1) with FS = 300psi 

From Eq. (4.27):  1 1 0.00005 1.006ca X= + ∗ =  

From Eq. (4.28):  1 *0.00005* 1.8cb Z FS= = −  

 
• Find a3 and b3 by linearly fitting the measured values ( 3 3c sy a y b= + ) 

The summations required by Eq. (4.8) for the linear fitting are listed in 

Table 7. 

 
sy  cy  

2
sy  s cy y  

i ( ix ) ( iy ) ( 2
ix ) ( i ix y ) 

1 5.92 7.82 35.05 46.29
2 14.08 15.95 198.25 224.58
3 22.36 24.15 499.97 539.99
4 30.44 32.20 926.59 980.17
5 38.17 39.87 1456.95 1521.84

Total 110.97 119.99 3116.80 3312.87
 

Table 7 Summation Table for Example 4.3.1.c. 
 

Equation (4.8) becomes 

 3

3

3312.87 119.99 3312.87
119.99 5 110.97

a
b

    
=    

    
 (4.32) 

which gives slope  3 0.9937a = , and offset 3  1.9440b = . 

• Finding new compensation slope and offset 

From Eq. (4.25):  1 3 0.9997a a a= ∗ =  

From Eq. (4.26):  3 1 3* 0.1553b a b b= + =  

• Computing the new slope and offset adjustments 

(( 1) 0.00005) 6newX round a= − = −  

( (0.00005* )) 10newZ round b FS= =  
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 These news adjustments were also computed by the calibration VI result-

ing in 7newX = −  and 10newZ = , as shown in Figure 16. The small difference in the slope 

adjustment is due to rounding errors in Table 3 and subsequent computation. 

 Figure 17 shows the readings from the sensor (red line) and the calibration 

standard (white line) prior to the execution of the calibration process. The difference be-

tween the readings is almost two psi. 

 

 
Figure 17 Sensor and Calibration Standard before Calibration. 

 

 The new readings after the calibration process are shown in Figure 18 with 

an actual pressure of 5.14 psi and in Figure 19 with an actual pressure of 39.57 psi. No-

tice that in both figures the lines overlapped demonstrating that the calibration is effective 

through the entire range over which the calibration is made. 

 
Figure 18 Sensor and Calibration Standard after Calibration when the Actual Pres-

sure is 5.14 psi. 
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Figure 19 Sensor and Calibration Standard after Calibration when the Actual Pres-

sure is 39.57 psi. 
 

E. MAIN SUBVIS OVERVIEW 
The Master Module hierarchy is summarized in Figure 20. Since some of the VI’s 

used by this application are well-known from the LabVIEW libraries and LabVIEW ex-

amples, they are not discussed here. The main VI’s specifically designed and developed 

for this application are listed in Table 8 and briefly discussed below. 

 
Figure 20 Master Module sub-VIs Hierarchy. 
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VI Brief Discussion 

 
This VI starts the Honeywell PPT calibration process where the user can con-

tinuously acquire pressure measurements. During the acquisition, the VI does 

the linear fitting of the sensor’s points with respect to the calibration points (as-

sumed to be the actual pressure). Hence, considering the calibrator as a refer-

ence, the sensor’s accuracy is displayed graphically and numerically in terms of 

slope and offset. The process also allows the user to store the computed correc-

tions to the sensor RAM or EEPROM at any time. 

 
This VI uses the datasocket command channel to send commands to the Slave 

Module and waits for a reply. If an answer is not received after a time out pe-

riod, an error is generated. 

 
This VI takes the error cluster and an array of error codes to be ignored and 

gives an error cluster free of the requested errors. It also signalizes the errors 

found. 

 
RequestNewSensorInfo.vi displays a modal dialog box where the user can de-

fine a new sensor to be connected and monitored or calibrated. A cluster with 

the user information is given as output. 

 
This VI takes the cluster with the user information, tries to establish a connec-

tion and gives the complete sensor cluster with the information required for the 

monitoring and calibration process. If the attempt to establish a connection fails, 

an error message is generated. 

 
This VI is used in the Master Module and Slave Module to gather the measure-

ments of the sensors connected to the respective module. It takes the Sensor Set 

array and gives an array of doubles comprising the values. 

 
This VI updates the Main Module Sensor Set with the copy received from the 

Slave Module. The Slave Module always replies with a copy of its Sensor Set 

when it receives a command that causes a modification of any of the sensors’ 

fields.  
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VI Brief Discussion 

 
This VI is called by the calibration VI to request information from the sensors. 

It can request the current slope, current offset or even the current measurement. 

 
This VI sends commands to a sensor if the sensor is connected to the module 

from which this VI is being called, and updates the Sensor Set accordingly. 

 
This VI takes a sensor command, the sensor family and the sensor mode as in-

put and produces an array of strings comprising the sensor language strings 

needed to perform the given command. 

 
This VI takes the information needed to identify a sensor in the sensor set, the 

sensor set itself and the command string. It sends the command to the actual 

sensor, reads the reply, parses the measurement and provides the numerical 

value. 

 
This VI takes a TCP connection reference number, a regular expression to iden-

tify the substring to be parsed and provides the last match found in the TCP 

buffer. 

 
This VI takes a UDP connection reference number, a regular expression to iden-

tify the substring to be parsed and provides the last match found in the UDP 

buffer. 

 
This VI is used by the virtual sensor VI to communicate to local sensors con-

nected through serial ports. 

 
This VI takes a TCP connection reference number and a string and sends the 

string through the TCP connection. 

 
This VI takes a UDP connection reference number and a string and sends the 

string through the UDP connection. 

 
Table 8 Summary of the Key VI’s Designed for the Main Module. 

 



39 

F. COMMUNICATION THROUGH THE COMMAND-REPLY CHANNEL 

As stated previously, the application uses DataSocket to establish two different 

communication channels between the Master and Slave modules. The first channel, 

named “data channel”, has only one direction and is used to receive data from remotely 

connected sensors. On the Slave Module side of this channel, there is one dedicated 

thread which continuously reads the remote sensors’ data, organizes the data sequentially 

in one numerical array and sends the array to the Master Module, which may or may not 

receive the information. If the data array is not received, the Master Module assumes that 

the last reading is still valid. Hence, the “data channel” does not need strong mechanisms 

to guarantee data delivery because the continuous data flux ensures that the lost informa-

tion will be updated in the next cycle. 

The second channel, named “command-reply channel”, is a two-way communica-

tion channel used to transmit commands from the Master to the Slave Module and replies 

in the opposite direction. When the Master Module sends a command to the Slave Mod-

ule, it has to be sure that the requested actions were really carried out because both mod-

ules need to keep their sensor tables synchronized. The sensor table or sensor set holds 

the status of all connected sensors and should be updated in both modules when the user 

changes the number of connected sensors or the status of a particular sensor. 

The subVI CommandReply.vi, whose diagram is depicted in Figure 21, was cre-

ated with two main goals. The first is to let the Master Module detect if the command was 

received and accomplished and the second is to allow the Slave Module to return a reply 

when necessary. 

When the command cannot be performed, the Slave Module returns an error mes-

sage. If a reply is not received during the expected time, the subVI generates a time out 

error. 
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Figure 21 Diagram of CommandReply.vi. 

 

The command-reply channel is implemented using a DataSocket connection for 

each direction. Thus, the command-reply VI requires two URLs as input. URL_A defines 

the DataSocket connection used to write commands, while URL_B defines the 

DataSocket connection used to read replies. 

The Slave Module is able to understand 19 commands previously defined as listed 

in Table 9. Each command has a code, the number of arguments and the type of each ar-

gument. Since each command can have arguments with different data types, the com-

mand-reply VI uses a variant type for the argument input terminal.  

When the Master Module sends a command through the command-reply VI, the 

command code (unsigned integer) and the variant are bundled in a cluster prior to the 

transmission. Hence, when the cluster reaches the destination, the Slave Module needs to 

decode it to ascertain the original data type of each argument. 

After command and arguments are decoded, the Slave Module performs the re-

quested actions and always replies with the same command code. If the command is a 

query for some information, the reply comprises the command code and the desired in-

formation. If an error occurs during the command evaluation, the reply comprises the 

command code and an error cluster with the error code and respective message. If none of 

the two conditions above occurs, the reply comprises the command code and an empty 

variant. 

 



41 

Code Command Argument type Reply’s data type 
01 useContinuousMode Unsigned Integer - o - 
02 useSingleMode Unsigned Integer - o - 
03 measurePressure Unsigned Integer - o - 
04 measureFahrenheit Unsigned Integer - o - 
05 measureCelsius Unsigned Integer - o - 
06 selectTargetSensor Unsigned Integer - o - 
07 getSensorMap - o - cluster 
08 setMonitoredStatus Unsigned Integer 

Boolean 
- o - 

09 getPressure1 Unsigned Integer double 
10 getXZ Unsigned Integer Array of Integers 
11 setXZ Unsigned Integer 

Array of Integers 
- o - 

12 save2EEPROM Unsigned Integer - o - 
13 addSensor Cluster - o - 
14 removeSensor Unsigned Integer - o - 
15 selectCalibrator Unsigned Integer - o - 
16 getPressure2 Array of UI double 
17 getSlope Array of UI Integer 
18 getOffset Array of UI Integer 
19 matchSensors Array of UI Boolean 

Table 9 List of Slave Module’s Commands. 
 

G. SUMMARY 

In this chapter, the major features of the Master Module were presented with em-

phasis on the multithread characteristics, the sensor connection process, the communica-

tion mechanism and the calibration process. Three approaches were provided for the 

computation of the calibration process and, for each approach, an example is given to 

show the details related to every step. The next chapter presents the Slave Module.  
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V. THE SLAVE MODULE  

This chapter presents the Slave Module and gives a brief description of its main 

subVIs. The emphasis is given to the SlaveCore.vi that plays a central role in the Slave 

Module. 

A. INTRODUCTION 
In contrast to the Master Module, the Slave Module (SM) does not have a Graphi-

cal User Interface (GUI) directly controlled by the user. However, the Slave Module per-

forms an important role when an NCAP is used to gather the sensor data in a shipboard 

system. With both modules, the application can talk to the NCAP through a DataSocket 

communication channel. Hence, all the sensors connected to the NCAP through the Slave 

Module can be monitored and calibrated in the same manner discussed for the Master 

Module. 

B. MULTI-THREAD FEATURES 
During the connection process, all the sensors marked to be remotely connected 

stay under the Slave Module control until the sensor is removed. If the user wants to con-

trol the sensor from the Master Module, the sensor has to be reconnected. After initializa-

tion, the Slave Module starts one thread to gather measurements from all the sensors 

whose connections are under SM control. Hence, even without the direct control of those 

sensors, the Master Module continuously receives information from them. 

A second thread is also started after initialization to ensure that the SM is always 

listening to the commands sent by the MM. When the SM receives a command, the 

SMcore.vi is called to perform the required actions and provide the MM with the ex-

pected reply or an error message.  

The SM threads are depicted in Figure 22 and the subVI’s hierarchy in Figure 23. 
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Figure 22 Threads Running in the Slave Module after Initialization. 

 

C. MAIN SUBVIS OVERVIEW 

The Slave Module high levels subVIs can be seen in Figure 23, where the VI’s hi-

erarchy is expanded two levels down. Some of the subVIs will not be discussed here be-

cause they were already discussed in the previous chapter or are well-known from the 

LabVIEW libraries and LabVIEW examples. The subVIs exclusively designed for the 

SM are briefly discussed below. 

 
Figure 23 Slave Module Hierarchy Tree. 
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VI Brief Discussion 

 
This VI is the main subVI in the SM; it takes the command sent by the MM, the 

reply URL, the Sensor Set and an error cluster as input. Performs the requested 

action, sends a reply to the MM and returns the updated Sensor Set and an error 

cluster as output. 

 
This VI is used when the entire Sensor Set needs to be sent through the 

DataSocket channel. It was developed to make a copy of the Sensor Set exclud-

ing the fields not supported by the DataSocket protocol. 

 
This VI takes a sensor ID and the Sensor Set and returns the sensor cluster and 

its index.  

Table 10 Summary of subVIs Designed for the Slave Module. 
 

The SlaveCore.vi subVI depicted in Figure 24 is the “heart” of the Slave Module 

and is responsible for executing the actions required by the commands received from the 

MM.  

The diagram in Figure 24 shows how the “add sensor” command is implemented. 

It takes the current Sensor Set and a cluster with the command ID and a variant data. 

When the subVI is called, it first identifies the command in order to identify which type 

of data is being transported inside the variant element.  

In the case of the “add sensor” command, the data required to perform the com-

mand also depends on which module the sensor is being connected. When the sensor is 

connected to the Master Module, the Slave Module receives a cluster with the informa-

tion of an already connected sensor and only needs to update its Sensor Set. On the other 

hand, if the sensor is not yet connected and should be connected to the Slave Module, the 

cluster received contains the information provided by the user to establish the desired 

connection. Hence, it establishes a connection if necessary, updates the Sensor Set, and 

sends a modified copy of the updated Sensor Set, excluding elements not supported by 

DataSocket, as a reply to the Master Module. 
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The SlaveCore.vi is also able to perform commands to switch the sensor mode to 

single or continuous, to read pressure or temperature, to read or write slope and offset 

used in the calibration process, to set a sensor as a calibrator, and others. 

  

 

 
Figure 24 Slave Module Main sub-VI (SlaveCore.vi). 

 

The subVI SelectFields.vi has its diagram depicted in Figure 25. It takes the Sen-

sor Set and an error cluster as input and returns a variant as output. The variant will con-

tain a modified copy of the Sensor Set or the input error, if an error is detected. The 

modified copy is necessary because the Sensor Set received as input contains reference 

numbers to the TCP and UDP connection and to the opened file. These elements cannot 

be sent through the DataSocket channel. 
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Figure 25 Diagram of SelectFields.vi. 

 

The IDtoIndex.vi is a very simple subVI used to find a sensor in the Sensor Set. It 

takes the sensor ID and uses the while loop depicted in Figure 26 to find the sensor index. 

It also returns the matched sensor and a Boolean to indicate if the sensor was found.  

 

 
Figure 26 Diagram of IDtoIndex.vi. 
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D. SUMMARY 

In this chapter, the Slave Module threads were presented with a brief description 

of its main subVIs. Emphasis is given to the SlaveCore.vi which is the main subVI. The 

next chapter presents a simplified version of the calibration system designed for the cali-

bration of analog sensors. 



49 

VI. THE NEW CALIBRATION SYSTEM FOR ANALOG 
SENSORS 

This chapter presents a simplified calibration system focusing on the monitoring 

and calibration of shipboard analog sensors.  It offers the same calibration capabilities 

discussed in the previous chapters by means of a new GUI based on the prototype devel-

oped in [Ref. 5]. 

A. INTRODUCTION 
Although the Master Module and Slave Module could be easily adapted to con-

trol, monitor and calibrate analog sensors, they were designed to handle only digital sen-

sors. Rather than add one more capability to this application, the decision was made to 

create another application that is lighter and easier to use, which could be tested and 

evaluated by the Land-Based Testing Facility at NAVSEA-Philadelphia with a good 

chance of being approved for use onboard ships in the near future. The Analog.vi was 

developed with this purpose in mind. 

To handle analog sensors, several features provided by the Master Module and 

Slave Module are not required. The connection process, the two-way communication 

channels established with each sensor, and other features offered by the dual module de-

sign are beyond the need of analog sensors and provide an extra level of complexity not 

required for the calibration of analog sensors in current shipboard systems.  

B. THE MAIN VI AND THE USER INTERFACE 
The prototype presented in [Ref. 5] is the starting point for this new calibration 

system for analog sensors.  

The Analog.vi has three threads running on the operator’s laptop/tablet PC de-

picted by the three loops in the block diagram of Figure 27. The central loop performs the 

main thread, which is responsible for reading data from three different origins: the analog 

sensor, the calibration standard and the ICAS. The upper loop is responsible for the de-

tection of events generated by the user and the lower loop is responsible for starting the 

calibration process when requested by the user. 
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In the main thread, the analog sensor data comes from the NCAP through a 

DataSocket connection and is represented by a voltage between 1 and 5 V which is lo-

cally converted to the pressure measurement. The local variables “multiplier” and “addi-

tive” are used to store the slope and offset used to make this conversion. 

 

 
Figure 27 Block Diagram of the Analog.vi. 

 

The Crystal PPC is also used by the Analog.vi as the calibration standard and can 

be wired or wirelessly connected to the laptop/tablet PC. 
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The ICAS readings are provided only for test and evaluation purposes. It allows 

the operator to detect if the local measurement matches the measurements taken by the 

Integrated Condition Assessment System (ICAS). 

Figure 28 shows the application graphical user interface which comprises four 

sub-panels: the control sub-panel in the top left position, the sensor sub-panel in the top 

right position, the ICAS sub-panel in the bottom left position, and the calibration standard 

sub-panel in the bottom right position.  

 

 
Figure 28 Front Panel of the Analog.vi. 

 

The control sub-panel has textboxes used to provide the DataSocket Server ad-

dress, the path to the calibration log file, and the path to the ICAS file. The Calibration.txt 
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file depicted in Figure 29 is used to maintain a history file of the results generated by the 

calibration subVI. The ICAS file depicted in Figure 30 is used, for evaluation purposes, 

as a communication medium between this application and the ICAS system. 

 

 
Figure 29 Log File Generated or Updated at the End of Calibration Process. 

 

In the top right position, the sensor sub-panel has a gauge used to display the 

readings from the analog sensor. The first textbox provides the sensor full scale value 

which is used to compute the sensor absolute tolerance. The local variables “multiplier” 

denoted by a and “additive” denoted by b are used to convert the voltage read from the 

DataSocket connection xs to the pressure value ys. 

 s sy ax b= + . (4.33) 

In the bottom left position, the ICAS sub-panel has a gauge to display the read-

ings from the ICAS system. For evaluation purposes, the agreement was to obtain the 

ICAS value through a text file which is updated by the ICAS system periodically. The 

ICAS updates the file by appending a line with several fields as shown in Figure 30. The 

line has the sensor ID in the first field, the pressure measurement (upon updating) in the 

third field, and the other fields are filled with information related to the sensor. In order to 

find the latest pressure written to the file for a specific sensor, a subVI was developed to 

perform a backward file search for the desired sensor. This subVI takes a sensor ID, finds 
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the latest appended line related to the desired sensor and parses the pressure value stored 

in the third field. This value is displayed and also compared to the sensor local readings 

to verify if they are synchronized by the given tolerance. 

 

 
Figure 30 The ICAS.txt File. 

 

In the bottom right position, the calibration standard sub-panel displays the read-

ings from the calibration standard (Crystal PPC). This sub-panel has a text box where the 

tolerance for the sensor readings can be specified and a menu ring used to define the type 

of connection used by the calibration standard, which can be RS232 cables, Bluetooth, or 

an 802.11b wireless LAN. 

C. VIs RUNNING ON THE NCAP 
On the NCAP side, two VIs are running, perchs_daq1_local.vi [Ref. 5] and Han-

dleNCAPConsts.vi. Figure 31 depicts the diagram of the first one and is responsible for 

sending the analog sensor data through the DataSocket “data” connection. This single 

connection is used to provide a DataSocket communication channel from the NCAP to 

the user’s laptop/tablet PC. Two others DataSocket connections, named “command” and 

“reply” connections, are used to implement a two-way communication channel to allow 

the management of the calibration constants in the NCAP configuration file. 
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Figure 31 Diagram of perchs_daq1_local.vi [From Ref. 5]. 

 

Figure 32 depicts the HandleNCAPConsts.vi diagram which is responsible for re-

ceiving, executing and replying read or write commands. The read command is sent when 

the user wants to load the current slope and offset values stored in the file. The write 

command is typically sent after a calibration session when the slope and offset that mini-

mizes the Least Squares Errors are computed and the user wants to update the configura-

tion file. 

 
Figure 32 Diagram of HandleNCAPConsts.vi. 
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D. THE CALIBRATION PROCESS 

In order to calibrate analog sensors, the OmegaCalib.vi was developed to allow 

the user to start an iterative process with three basic steps: 

• read the directions displayed in the message board; 

• adjust the pressure accordingly; and 

• accept the measurements by clicking the OK button. 

The three steps are repeated as many times as required by the current calibration 

procedures. Each time a new point is acquired, the subVI’s Front Panel is appended with 

a new record comprising the calibration standard (PPC) readings, the sensor readings and 

the limits of the sensor tolerated range. Additionally, a graphical visualization of the 

measured values along with the actual pressure is provided. Figure 33 shows the user in-

terface used during the calibration process. Note that the white line is fitted to the meas-

ured values and is above the line of the actual pressure values (red line). This situation 

indicates that the current slope and offset are generating sensor readings greater than the 

calibration standard readings. The Front Panel also shows the current slope and offset and 

the computed values required to minimize the Least Squares Errors. 

The user can locally validate or abort the calibration process by pressing the 

“Done” or “Abort” buttons, respectively, at any time during the calibration process. 

Figure 34 depicts the Block Diagram of the OmegaCalib.vi. It is composed of an 

initialization block, the main loop and the final block. The initialization block is used to 

set the controls, variables and indicators to initial values required by the main loop. The 

main loop is the block that interacts with the user and performs the calibration process. 

The final block is responsible for generating the log file depicted in Figure 29. 
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Figure 33 User Interface for the Calibration Process. 

 
 

 
Figure 34 OmegaCalib.vi Block Diagram. 
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Figure 35 illustrates the Front Panel of the Analog.vi after the calibration process. 

Note that the local variables “multiplier” and “additive” were updated and that the error 

between the sensor and calibrator standard is very small. 

 
Figure 35 Front Panel of Analog.vi After the Calibration Process. 

 

E. SUMMARY 
In this chapter, a new calibration system was designed to perform the monitoring 

and calibration of analog sensors already used by shipboard systems. The GUI developed 

in [Ref. 5] was taken as the starting point to obtain a lighter version of the new calibration 

system. The next chapter presents the conclusions and explains the accomplishments of 

the thesis. 
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VII. CONCLUSIONS 

A. SUMMARY 
This thesis presented the design and development of a new closed-loop calibration 

system for shipboard pressure sensors.  The software of the calibration system was im-

plemented using LabVIEW, which is the industrial standard language for measurements 

and automation.  The calibration system takes advantage of the latest wireless communi-

cation technologies including 802.11b wireless LAN and Bluetooth.  The version of the 

calibration system developed at the completion of this thesis was operational and success-

fully demonstrated to the project sponsor. 

The fundamental approach taken in this thesis was to wirelessly transmit both the 

sensor data and calibration standard to a Tablet PC.  The Tablet PC compares pressure 

measurements from the sensor and calibration standard at multiple pressure points gener-

ated by a portable hand pump.  The calibration constants (slope and offset) are automati-

cally computed, and downloaded to the smart sensor at the request of the user. 

The newly developed calibration system has the following features: 

• It adopts a modular approach to software development, which makes it 
easy and flexible to use and expandable in the future.  The system consists 
of two main modules named Master Module and Slave Module.  The Mas-
ter Module always resides on the Tablet PC, providing a graphical user in-
terface (GUI) for the user to enter commands and view measurements and 
other useful information.  The Slave Module can reside on the same Tablet 
PC, or on a remote machine (e.g., on an NCAP). 

• It is capable of handling local sensors directly connected to the Tablet PC 
and remote sensors connected to an NCAP or other networked computers.  
Sensors in this sense can be a sensor to be calibrated or a calibration stan-
dard. 

• It is capable of connecting sensors using RS232 cables, an 802.11b wire-
less LAN, and Bluetooth. 

• It can be easily operated by one person. 

• It is capable of calibrating more than one sensor at a time.  This feature 
can be used in a calibration facility where multiple pressure sensors are 
connected to a single pressure source manifold. 

• It automatically computes calibration constants (slope and offset). 
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• It is able to retrieve the current calibration constants, and write the new 
constants directly to the smart digital sensors. 

• It provides an effective Graphical User Interface (GUI) for displaying the 
sensor readings and accepting user commands. 

B. FUTURE WORK 

Since the calibration system was developed using a modular approach, it can be 

easily extended to accommodate other calibration requirements.  The calibration system 

in the present form was mainly developed for the Honeywell PPT smart sensor. The pro-

cedures documented in this thesis can be used to develop calibration systems for other 

digital sensors.   

The calibration system developed in this thesis is currently a stand-alone system.  

One possible direction for future work is to integrate it with the Integrated Condition As-

sessment System (ICAS).   

The newly released LabVIEW 7.0 version provides support for handheld devices 

such as the iPAQ Pocket PC.  It is possible to port the calibration system currently devel-

oped for the Tablet PC/Laptop PC to the Pocket PC.  
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